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For thermosolutal convection in an enclosure of arbitrary vertical aspect ratio, mixed 
boundary conditions - with salt flux and temperature prescribed on a horizontal 
boundary - can lead to symmetry breaking via pitchfork bifurcation. In the present 
paper we consider an enclosure of very small height-to-length aspect ratio 8, as 
encountered in the world's oceans. In this case, if the ratios of the vertical to horizontal 
components of viscosity, 9, and of diffusivity, 9, are of order unity, advective 
transport cannot set in even at very high Rayleigh numbers. The ratios 9 and 3 must 
be substantially less than unity in order for convection to dominate the heat and solute 
transport. 

We have investigated numerically the effects of monotonic and non-monotonic 
temperature and salinity boundary conditions in a two-dimensional domain at 
constant S = 0.01 and constant 9 = 2 = 0.01. This ratio of eddy-mixing coefficients 
reflects the different scales of motion - vertical and horizontal - in the ocean, rather 
than a physically realizable laboratory fluid. It is found that when the salt-flux strength, 
y, is sufficiently large, the system undergoes a second bifurcation for both types of 
boundary conditions. It is a Hopf bifurcation, leading from the asymmetric steady 
states produced by the first one to oscillatory solutions. These periodic solutions are 
stable and very robust. An approximate Hopf bifurcation diagram has been produced. 
We conclude that non-monotonic salt-flux conditions are neither necessary nor 
sufficient to induce the oscillations, while the strength of the salt flux is crucial. 

1. Introduction 
The possibility of multiple equilibria - symmetric or antisymmetric, temperature- or 

salinity-driven -- in the oceans's circulation has been raised by Stommel (1961) in a 
two-box model. The problem of thermosolutal convection within a rectangular 
container has been investigated in this context by Cessi & Young (1992), Quon & Ghil 
(1992), and Thual & McWilliams (1992). These authors and others have discussed the 
problem's implications for long-term changes in the circulation of the Atlantic and 
world oceans. Quon & Ghil (1992, hereafter referred to as QG) showed that when 
symmetric restoring boundary conditions are applied on a horizontal boundary of the 
container, i.e. temperature T and salinity S are specified on the boundary, two 
convection cells symmetric about the central vertical axis of the container are the only 
steady solution. However, when the restoring boundary condition of a fixed salinity 
function is replaced instead by an appropriate salt-flux condition (i.e. a salinity 
gradient as/& is imposed across the bottom boundary), the symmetric circulation may 
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transfer its stability to asymmetric circulations. We have established in QG that the 
bifurcated circulations can vary from arbitrarily slight asymmetry to a single-cell, 
antisymmetric state. Since the dominant cell can either be on the left or the right side 
of the container, the bifurcation is of the pitchfork type. Thual & McWilliams (1992) 
have reached independently similar conclusions. In this paper, we show that Hopf 
bifurcation may follow upon increasing the salt-flux strength further. 

QG studied the Boussinesq equations for a non-dimensional parameter set D = (Ray 
y, A, 7, CT, S), where Ra is the thermal Rayleigh number, y the salt-flux strength, A the 
salinity-to-temperature buoyancy ratio, 7 the Lewis number or the ratio of salt 
diffusivity to thermal diffusivity, CT the Prandtl number, and S the container’s aspect 
ratio. It was shown that the most important bifurcation parameters are the thermal 
Rayleigh number, Ra, and the salt-flux strength, y. Consequently an approximate 
stability curve in the y-Ra plane was constructed over 3 decades of Ra and over 2 
orders of magnitude of y (see figure 14 in QG). QG’s results were all based on aspect 
ratios 0.2 and unity. The model is reviewed and small-S scaling introduced in §52 
and 3. 

We first investigate the limitations imposed by very small aspect ratio, S, and the 
related effects of two additional parameters, 9 and 2, on the circulation. The former 
is the ratio of the vertical to the horizontal viscosity coefficients, and the latter the 
corresponding ratio of diffusivities. Extremely small aspect ratios 6 are studied for two 
specific reasons: (i) the aspect ratio of the oceans and most geophysical fluid systems 
is very small, and (ii) when 6 is small, the departures of 9 and 2 from unity become 
important. In 54, the boundary conditions on T and S imposed along the bottom of 
the box are monotonic, as they were in QG. They are both symmetric functions 
increasing with distance from the centre of the box towards both sidewalls. 

In §55 and 6, we investigate how non-monotonic, though still symmetric, boundary 
values of T and S affect the overall circulation. At the surface of the Atlantic Ocean, 
salt flux that is non-monotonic along a meridian is a prominent physical feature 
(Levitus 1982). We consider two types of non-monotonic conditions: (a) type A, for 
which both T and S are non-monotonic; and (b) type B, for which T is monotonic and 
S is non-monotonic, or vice versa. The non-monotonic T and S functions will be 
described later. At high Rayleigh number with 6 2 0.2, monotonic T and S restoring 
boundary conditions can produce non-monotonic salt fluxes (see QG), while at smaller 
6, they produce essentially a monotonic salt flux with ‘wiggles’ at the end points. Non- 
monotonic restoring conditions produce non-monotonic salt fluxes even at very small 
6. To ascertain that the salt flux is truly monotonic, we shall smooth out the 
aforementioned ‘wiggles’ of the salt flux when it is used as a boundary condition. 

Concluding remarks follow in 57. The main conclusion is that our system can 
produce robust oscillations for the parameter range of interest. Hopf bifurcation 
appears to be an intrinsic property of thermosolutal convection with mixed boundary 
conditions. It is difficult, however, to relate in detail the oscillations in the present 
highly simplified model to those observed (Ghil & Vautard 1991 ; Allen, Read & Smith 
1992a, b) or simulated (Mikolajewicz & Maier-Reimer 1990; Weaver, Sarachik 
& Marotzke 1991 ; Weaver et al. 1993; Chen & Ghil 1995) in the atmosphere and the 
oceans. 

2. The model and scaling for small S 
A detailed description of the mathematical model and numerical methods is gven in 

QG. We only present here some salient points that are relevant to the discussion of 
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rescaling The model consists of a rectangular box of arbitrary height-to-length aspect 
ratio, S. The box contains a solute, e.g. salt. For the first stage of computation, the 
bottom of the box is maintained at prescribed temperature T and salinity S,  that are 
functions of the horizontal coordinate. Such boundary conditions on both T and S are 
called ‘restoring’ in the recent oceanographic literature. 

The sidewalls and the top boundary are thermally insulated and impermeable to salt. 
At the top of the box, a no-slip condition is imposed, while the rest of the boundaries 
are free-slip. All four boundaries are assumed rigid. Hence all normal velocities on the 
boundaries are set equal to zero, and total mass is conserved in the box. Along the 
bottom and the sidewalls, the tangential velocities are non-zero, but their normal 
gradients are required to vanish, i.e. these three walls support no tangential stress. 
Solutions for the problem with inhomogeneous boundary conditions imposed along 
the top are obtained from the present ones by reflection in a horizontal axis of 
symmetry. 

After the system has attained a quasi-steady state, the salinity gradient across the 
bottom boundary is computed and used to replace the salinity function as the 
boundary condition there. The same temperatures are still prescribed on this 
boundary, leading to so-called ‘mixed’ boundary conditions for T and S .  This stage of 
the computation may lead to symmetry breaking even for infinitesimal perturbations. 

The governing equations are the two-dimensional Navier-Stokes equations and the 
heat- and salt-transport equations. As in QG, we shall introduce a Cartesian 
coordinate vector X = (x, z),  and a velocity vector V = (u, w) .  However, we shall use 
different characteristic values to non-dimensionalize the equations: horizontal 
lengthscale L and vertical lengthscale H ,  L being the length and H the height of the 
box; velocity scales U = (K(, , )  t ~ ( ~ ) ) ’ / ~ / Z f  and W = (K(, , )  V ( , , , ) ~ / ~ / L ,  K(,,) and v ( ~ )  being 
respectively the horizontal components of the thermal diffusivity and kinematic 
viscosity tensors; timescale 7 = L / U  = H / W  = L H / ( K ( , , , ~  v ( , , , ) ~ / ~ ;  and temperature 
and salinity scales AT and AS, being respectively the maximum temperature and 
salinity differences along the boundary of the enclosure. 

The two-dimensional governing equations in non-dimensional form are 

au/at + w aulax + u sup; = - ap/aX + (a1/2/s) (82 aZU/ax2 + 9 azu/azZ), (2. I 

+ ( a 1 / 2 / ~ )  (62 a2w/ax2 + s a2w/az2), (2 .2)  

(2.3) 
(2.4) 

v .  v=o, (2 .5 )  

awlat + u awlax + w aw/az = - 8-2 ap/az + SRa( T -  AS) 

aT/at+ u az-px+ w az-/az = ( ~ a 1 / 2 ) - 1  (62 a2T/aX2 + 9 a2T/az2)>, 
as/at + u a s p x  + w as/az = v ( ~ a 1 / 2 ) - 1  (m2s/a.x2 + .ii! a2s/az2), 

with the following boundary conditions: 

V = O  at z=S,  (2.6a) 
du/az = w = 0 at z = 0, (2.6b) 

u = a w p x  = 0 at x = O , l ,  ( 2 . 6 ~ )  
aT/an = aS/an = 0 at z = S , X  = 0,1, (2 .6d)  

where a/an denotes the normal gradients on the respective boundaries. The monotonic 
temperature and salinity boundary conditions are 

T = T(x) = S(x)  = 0.5 (cos 2nx- 1) at z = 0, (2.6e) 

or T = T(x),  aS/az = yf(..) at z = 0 ;  (2.6f 1 
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the non-monotonic conditions are defined below in (5.1). The equation of state is 
linear, 

p = po(l - a T A T + P S A S ) ;  (2.7) 
here a and P are the coefficients of volumetric expansion for heat and salt respectively. 

These equations are similar to those in QG, except for the explicit appearance of the 
aspect ratio 6 = H / L  in (2.1)-(2.4). The additional parameters 9 and 9 are the ratios 
of the vertical-to-horizontal component of the viscosity and diffusivity, as defined in 
the next paragraph. Note that the same 9 appears in both (2.3) and (2.4); we have thus 
tacitly assumed that the diffusivity ratios for heat and salt are equal. This is convenient, 
as well as justified by the fact that we do not really know what the difference between 
the two, if any, might be in the oceans. 

The main non-dimensional parameters are 6, 

the (thermal) Rayleigh number 
Ra = U g A T L 3 / K ( h ) ~ V h ,  

the salt-to-heat buoyancy ratio 

the Lewis number 
h = P A S / ( a A T ) ,  

'I = K ( h )  .*IK(!&) T1 
the Prandtl number 

the viscosity ratio 

and the diffusivity ratio 

= V ( h ) / K V t )  T, 

= v ( t ' ) / v ( h ) ,  

= K ( z > )  T / K ( h )  T = K ( z , ) S / K ( h ) S ,  

( 2 . 8 ~ )  

(2.8 6) 

( 2 . 8 ~ )  

(2.8 d )  

(2.8e) 

(2.8f.l 
where v and K respectively stand for viscosity and thermal (or solute) diffusivity. 
Subscripts u and h denote the vertical and horizontal components of the corresponding 
(diagonal) tensors. This yields the following parameter set for the problem : 

(2.9) 
For water, B = O(10) and A = 0.32. 

The salinity gradient (salt flux) calculated from the symmetric quasi-steady state 
with boundary condition (2.6e) yieldsflx) in (2.6f), y being the salinity flux strength, 
which is unity when the original flux is specified. However, we shall treat it as a free 
parameter. For almost all the computations in QG, y < 1.0 was used. In this paper, 
y = 0.7, 1.0, 1.5 and 3.0 will be used, while h is fixed at 0.32. For y z 0(1), changing 
aS/az by a factor y on the boundary, cf. (2.6f), is essentially the same as changing S 
to yS throughout the domain, cf. (2.2E(2.4) here and Appendix A in QG. Thus y and 
h are not independent parameters in the set SZ of (2.8), and QG showed that it is more 
practical to vary y, while keeping h fixed. Values of yh < 1 mean that we study 
temperature-dominated regimes, being motivated by the current circulation regime of 
the Atlantic Ocean (Bryan 1986; Chen & Ghil 1995). 

Thus the parameter set D in QG is enlarged here to include 9 and 9. In QG we have 
already investigated the effects that most of the parameters (2.9) have on the 
circulation, except those due to very small 6. The ratios 9 and 9 were fixed at unity 
in QG and in other previous studies. 

0 = (Ra, y, A, 7, a, 699, 9). 

3. Approximations for small S 
When 6 is small, the vertical diffusive terms can have dominant effects on both tracer 

and momentum transfers. Planetary flow systems usually have small aspect ratios and 
are dominated by advection. In this section, we show how 9 and 9 affect the 
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boundary-layer thicknesses. In addition, we shall find an approximate solution for very 
small 6, and approximate threshold values of 9 and 9 for which advection is the 
dominant tracer-transport mechanism at small 8. 

3.1. Boundary-layer scales 
Let us consider steady flows represented by the following linearized equations : 

o = - ap/aS + ( U ~ S )  (82  azu/axz + 9 azu/azz), (3.1) 

0 = - S - ~  a p p z  + SRaAT+ ( U ~ / ~ / / S )  (a2 a 2 W / a 2  + 9 a2w/az2), (3.2) 

u a T/ax + w a T/az + ua T/ax + w a T/az = ( ~ d / ~ ) - ~  (a2 a2T/ax2 + 3 a2 T/azz) ,  (3.3) 

w .v=o ,  (3.4) 

where the overbar denotes averaged values representative for the region of interest (e.g. 
the boundary layers). The T- and S-equations have been combined, with (1-A) 
replaced by A in (3.2), cf. QG. Neglecting the lower-order derivatives, we obtain the 
following vertical and bottom boundary-layer equations : 

a4T/ax4 = - ( A T  Ra/S) T ,  

a5 T/az5 = - A T,  s5 Ra(99)-' a T/ax.  

(3.5) 

(3.6) 

It is clear from (3.5) that the vertical boundary-layer thickness is proportional to 
and from (3.6) that the horizontal boundary-layer thickness is proportional to 

Ru-' /~  (see Appendix B in QG). For small 8 and small B and 9, these layer thicknesses 
have the proportionality constants S1l4 and ( . c ? ? ~ ) ' / ~ / S ,  respectively. Thus if 99 is large 
compared with S, the bottom boundary layer is so thick that vertical diffusion 
dominates. On the other hand, if S is kept constant and we assume that 9 = 2 are 
small, then the bottom-layer thickness will decrease roughly like P2l5. These 
proportionalities are not exact because other factors, such as T,  and T,, cannot be 
estimated a priori. But for sufficiently small 9 and 9, the bottom boundary-layer 
thickness does decrease like the appropriate powers of 9 and 9. 

3.2. Approximate solutions for infinitesimal 6 
How does very small 6 affect overall circulation when 9 and 3 are not small? In QG, 
pitchfork bifurcation occurred - for S = O(1) and 9 = 9 = 1 - due to a convective, 
nonlinear phenomenon, described heuristically by Walin (1985) and corresponding to 
large values of Ra. For S small and 9 = 9 = 1, Cessi & Young (1992) used an 
expansion in E = xS to obtain analytic solutions dominated by diffusion. We show here 
how small 6 inhibits advection for 9 = 2 = O( 1). 

For small S, we can formally expand the dependent variables in series of ascending 
powers of 8:  

u = Su(') + Szu(2) + . . . , 
w = SW(') + S2w(2) + . . . , 
p = p(0) + Sp(') +SZp(2'+. . . , 

s = S(O) + 6s'" + Szs'z' + . . . . 
T = T(O) + ST"' + S2T(') + . . . , 
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Substituting these power series into (2.1)-(2.5) and assuming steady state, we obtain 
the following equations, identical for the lowest two orders of each variable: 

(3.7) 

(3.8) 

(3.9) 
(3.10) 

~u".2'/~x+c?M'(l .2)/az = 0. (3.1 1) 

These equations are based on the condition that 9 $ S2 and 2 $ d2. 
From (3.9) and (3.10) we see that, if 9 and 22 9 6'. vertical diffusion governs T- and 

S-transports. Equation (3.8) represents a hydrostatic balance. For the two terms in 
(3.8) to balance each other, we must have Ra - for 6 = lo-', this would yield 
Ra - lo6. This high value seems to contradict the rule of thumb that diffusive processes 
are expected to dominate transport only when Ra is small. Defining the Rayleigh 
number with H as the lengthscale - the way it is usually done for the Btnard problem, 
instead of L, as in (2.8a) - yields a new Rayleigh number, Ra, = S3Ra. Thus (3.8) 
would only require, formally, Ra, - O( 1). However, (3.8) permits in fact a very wide 
range of values for Ra,, as shown numerically in $4.1. In order to be consistent with 
QG, Ra is used throughout this paper, with the corresponding value of Ra, only 
recalled, on occasion, for orientation purposes. Since we have kept S = 0.01 for all the 
numerical computations, Ra, = s3Ra = 10-6Ra is easily calculated. 

For illustration, we shall only solve the lowest-order equations (3.7)-(3.1 l) ,  i.e. solve 
for u and w, accurate to O(lf2) and p ,  T and S to O(6). We shall integrate (3.8) directly 
to obtain the pressure as a function of Tand S .  Consider S = 9 to be O(l), i.e. keeping 
the vertical and horizontal coefficients of viscosity and diffusivity equal in magnitude. 
From (3.9) and (3.10) the solution is 

T'O) = a- + M ( s ) ,  

where M ( x )  is to be determined. To satisfy the boundary conditions (2.6d) and (2.6e), 
we require a = 0, and 

T(") = M(.Y) = O . ~ ( C O S ~ X S -  1 ) ;  (3.12) 

9") has the same functional form as T'") in (3.12) and is independent of z .  
Since both solutions T(") and S'O) have the same functional form, (3.8) can be 

written as 

where A ,  = Ra,(l - A ) .  The solution p'") is 

,?p'"'/c?z = A ,  Fa), 

p(O) = A ,  JTio)dz = ;A,,(cos~Rx- l)z+C(x), (3.13) 

where C ( s )  is an arbitrary function of x, given by the boundary conditions. Since we 
do not know the boundary conditions for p"), we shall determine C(x) later. 

From (3.7), the lowest-order balance for u( l )  is 

+ p ' " ' / ~ s  = gpam 2 ? u ( 1 ) / ( ) 2 2 ,  

or 

After integrating the above equation once, we have 

a2u("/?z2 = (9d/2)-1 A H  R( -sin 27tx) z + aC/,?.x. 

du(')/az = (9 d/2)-1 A ,  R( -sin 2rc.x) ;z2 + z 2C/c7x + D(.u). 
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The boundary condition au/az = 0 at z = 0 gives D(x) = 0. Further integration yields 

u(l) = - A ,  nz3(69 @)-l sin 2nx + (iz') aC/ax + E(x). 
Formally 

(3.14) 

w(') = - &(')/ax& I 
= - A ,  nzZ4( 1 2 9  a1/2)-1 cos 27tx + 6.3 a2c(x)/ax2 + aE(x)/ax + ~ ( x ) .  (3.1 5 )  

Now we can apply the boundary conditions on u(') and w(l) to determine C(X), E(s) ,  
and F(x). Applying u(') = 0 at z = 6 to (3.14) and w(') = 0 at z = 0 to (3.15) gives 

E(x) = F(x) = 0; (3.16) 

(3.16) would also make w(') satisfy the boundary condition at z = 6, i.e. w(' )  = 0 + O(s3). 
At this stage one still cannot determine aC(x)/ax, because we have not included the 
tl2u(')/i3x2 term in the lowest-order analysis. However, we can assume C to be an 
antisymmetric function like sin 2nx, because u is antisymmetric, as later computations 
show. So basically the solutions are diffusion dominated at small 6. They consist of 
nearly vertical isotherms and isohalines, and the circulation contains two antisymmetric 
cells. It does not qualitatively differ from the low-Rayleigh-number flows at larger 
aspect ratios studied in QG. 

The details of these conduction-dominated solutions have been studied analytically 
by Cessi & Young (1992). Here it suffices to conclude that, for 9 = 9 = O(1) at small 
6, vertical diffusion dominates the momentum, as well as the heat and salt transport. 
As we shall show later, this statement holds even at very high Rayleigh number. Thus, 
to render advection dominant, as it is in geophysical flows, we must keep 9 and d 
small. In the next section, we study therefore systematically the effects of decreasing :?? 
and 9 on the circulation. 

To help with the choice of parameters, let us examine the parameter values used in 
more highly resolved, three-dimensional ocean models, specifically those for the 
Atlantic Ocean. The north-south lengthscale of the Atlantic Ocean is approximately 
lo4 km, and its representative depth is about 4km. Hence the aspect ratio is 
S = 4 x lop4. The following values of parameters are often used in oceanic general 
circulation models (OGCMs: Bryan & Cox 1968; Bryan 1986): the vertical eddy 
viscosity and eddy diffusivity are 1 cm2 s-l, and the horizontal eddy coefficients are 
0(107) cm2 s-'. Hence 9 and 9 are O(lOP7), on the same order of magnitude as 
S2 = 1.6 x lo-'. The Rayleigh number based on lengthscale L and AT = 30 "C, as 
defined in (2.8a), is about 3 x 1014; Ra, based on the ocean depth as a lengthscale is 
about 2 x lo4. Thus, in OGCM experiments using these parameter values, the vertical 
and horizontal diffusion terms have the same order of magnitude. For such small 
values of 6 , 9  and 9, and high Rayleigh number, advection in both the momentum and 
the energy equations dominates diffusion as a transport mechanism. 

These parameter values require, however, very high resolution throughout the 
domain, with even higher resolution in the boundary layers. Our main computations 
are limited to 9 = 9 = 0.01, 6 = lo-', and Ray < lo6 so as to permit a sufficiently 
broad exploration of parameter space and solution behaviour. 

4. Monotonic boundary conditions for Ra, = lo4, lo5 
We consider first the restoring boundary conditions on T and S given in (2.6e), 

which are functions of x and symmetric about x = 0.50. As already pointed out, they 
increase monotonically with distance from the point of symmetry. The computational 
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FIGURE 1 .  Symmetric states for monotonic boundary conditions and decreasing 9 and 9 at Ra = 
lolo. (a, b) B = 1 = 1 .O:  (a) isotherms T = const., Tmr, = 1 .OO, AT = 0.06 for this and all subsequent 
T-plots; (b) streamlines @ = const., = 0.72, A@ = 0.09. (c,  d )  9 = 22 = 0.10: (c)  isotherms; ( d )  
streamlines, = 3.60, A$ = 
0.45. Vertical scale exaggerated by a factor of 20, in this and all subsequent plots. 

= 3.20, A@ = 0.40. ( e , f )  B = 9 = 0.01 : (e) T-field; cf) @-field, 

mesh used in the present section consists of 300 x 20 equally spaced grid points. All 
computations for Ra > lo", as well as those for non-monotonic boundary conditions 
at all Ra-values (g5 and 6) ,  deploy meshes consisting of 300 x 30 grid points. In $4.1, 
it suffices to consider restoring boundary conditions, while mixed boundary conditions 
are used in g 4 . 2 ,  5 and 6. 

4.1. Symmetric solutions at decreasing values of 9 and 2, Ra, = lo4 
In $3.2 we saw that flows are diffusion dominated when 6 is sufficiently small, and 9 
and d are of order unity. As 9 and 9 are reduced, the influence of diffusion on both 
the momentum and energy equations will decrease. How transport mechanisms 
compete and advection gains dominance is illustrated in this section. As in QG, we use 
cr = 2.25 and 7 = 1 throughout (see $4.2.2(iv) of QG for different values of cr and 7). 

Figure 1 (a-f) shows the isotherms and the stream-function contours for three sets 
of decreasing values of 9 and 9: 9 = 1 = 1 .OO, 0.10, and 0.01, at 6 = 0.01. As explained 
in QG, the salinity distribution is exactly the same as the temperature distribution for 
restoring boundary conditions and 7 = 1. From (2.1>-(2.4), we see that 9' and d must be 
of order s"(= for the horizontal and vertical diffusion terms in both the 
momentum and energy equations to have equal strength. As shown in $3.1, the 
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FIGURE 2. Symmetric states for restoring boundary conditions, 9 = 22 = 0.01, and Ra = 10" 
(a) Isotherms; (b) streamlines, +,,,az = 4.80, A+ = 0.60. 

thickness of the horizontal boundary layer is proportional to ( ~ ' / R u ) ' / ~ :  many more 
grid points in the vertical would be needed to resolve reasonably well the equations at 
B = We have not carried out a computation for 9 smaller than 0.01, since these 
three cases are adequate for illustrative purposes. We focus on whether the system is 
advection dominated for a given Ra, 9 and 9, rather than on the comparative 
importance of vertical and horizontal diffusion. 

Figures 1 (a)-1 cf) are exaggerated by a factor of 20 in the z-direction. Figure 1 (a) 
shows that the isotherms (and, implicitly, isohalines) are almost vertical. Hence even 
at Ra = 10" (or Ra, = lo4), the tracer transports are governed by vertical diffusion 
when 9 and 9 are of order unity, as predicted in the last section. In fact, this still holds 
for Ra = 10" (not shown). The circulation in figure 1 (b) consists of two symmetric 
cells. 

As 9 and 22 decrease from unity to 0.10, the dominance of vertical diffusion over 
horizontal diffusion has clearly diminished, as seen from the isotherms shown in figure 
l(c) no longer being vertical. For this set of parameters, both the distribution of 
isotherms and the circulation (figure 1 d) are very similar to low-Ra flows studied in QG 
at 6 = O( 1). 

As 9 and 9 are further reduced from 0.10 to 0.01, the streamlines show substantial 
flow reversal in the sidewall boundary layers (figure If) .  The interior isotherms have 
been extensively compressed by downward flows (figure 1 e), and the fluid has become 
strongly stratified in the vertical. Obviously advective transport has become more 
important in the interior. The maxima of the two cells have migrated towards the 
sidewalls, implying much stronger boundary-layer flows along the vertical boundaries. 
The horizontal boundary layer is also much better defined (see figure If). 

These computations show that one must have 9 < 1 and 9 + 1 to induce an 
advection-dominated state for small 6. If we use 9 = 22 = 1, no such state can be 
attained at any reasonable Ra-value. 

4.2. Asymmetric steady states at Ra, = lo5, y = 1.5 
We concentrate in this subsection on Ra = lo", although some of the phenomena 
studied below also exist at lower values of Ra. When increasing Ra by a factor of 10, 
from 10'O to loll, the symmetric state changes greatly. Figures 2(a) and 2(b) show the 
temperature and stream function at Ra = 10". By comparing them with figures l(e) 
and 1 0 ,  which are their counterparts at Ra = lo'', three features stand out very 
prominently. First, figure 2(a) shows that increasing Ra by a factor of 10 reduces the 
bottom thermal layer thickness by about half. Comparing the two temperature 
profiles (not shown here) yields a good estimate for the ratio of the boundary-layer 
thicknesses in the two cases, (Ra,/Raz)1/5 = x 0.63, as discussed in 43.1. A second 
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FIGURE 3. Asvmmetric state for monotonic boundarv conditions at Ra = 10". 9' = 9 = 0.01. and 
y = 1.5. (a) Temperature; (b) salinity, S,,, = -0.70, S,,, = 1.90, A S  = 0.10; (c) density anomaly, 
pmt, = -0.80, p,,,,,* = 0, Ap = 0.05; and ( d )  stream function, $,,, = - 16.0, $moz = 0, A@ = 1.00. 

prominent feature is the small-scale oscillations near the sidewalls (figure 2 b). These 
spatial oscillations result from the unstable density gradient set up by strong horizontal 
advection of isopycnals in these areas; recall that the salinity, and hence density, plots 
are identical to that of the temperature in figure 2(a) .  This small-scale cellular 
convection is probably related to Rayleigh-Benard instability; its horizontal and 
vertical scales are comparable and well resolved numerically. 

A third feature is that, away from the sidewalls, the streamlines are confined to the 
container's bottom half. This confinement is partly because the boundary-layer 
thickness has been reduced by a factor of 0.63 as pointed out above, and partly for the 
following physical reason. Figure 1 (f) shows that for Ra = lo'', the sidewall layer 
carries the fluid from the bottom to the top. Detrainment from the boundary layer 
takes place in the top half of the container. It appears that the oscillations shown in 
figure 2(b) have drained the energy of the fluid locally and prevent it from rising higher. 
Consequently, the upper half of the fluid remains relatively undisturbed. 

A mathematical explanation is that boundary layer solutions often have an 
oscillatory component in addition to the exponentially decaying one. Since the 
horizontal boundary layer is so much thinner for Ra = lo", there is room in the 
vertical to accommodate the first zero crossing of this oscillatory component and 
hence a counter cell. The stream function maximum has increased from 3.2 to 4.8, an 
increase of 50%, when Ra is increased from 10" to loll. The spatial oscillations are 
very localized, and the interior streamlines remain quite smooth. The overall features 
show that, as expected, the flow and tracer transports become much more nonlinear at 
Ra = 10" than at Ra = 10". 

By analogy with the higher4 situation in QG at 9 = 2 = 1, we expect a pitchfork 
bifurcation from the symmetric states of figures 1 and 2, where y = I ,  to states with an 
increasing loss of symmetry as y increases. A highly supercritical state exhibiting a one- 
cell circulation is shown in figure 3, for y = 1.5. Figures 3 (a)-3 ( d )  give the temperature 
T, the salinity S,  the density anomaly p = T -  AS, and the stream function $. We have 
included p to show how delicately and precisely the temperature and salinity balance 
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each other to maintain a stable density structure within the fluid. The isotherms in 
figure 3(a) and the isohalines in figure 3(b) have, in this highly asymmetric flow, very 
different structures. One would expect that either T o r  S could independently generate 
some strong cells on the left side of the box, because of their strong horizontal gradient 
in that region. However, the combined effects are very different (figure 3c): the 
isopycnals are almost horizontal everywhere in the fluid's interior, very much like those 
in the oceans. The wiggles in the isopycnals on the right side correspond to the spatial 
oscillations of the flow, as shown in figure 3(d) .  

This one-cell state resembles well in its major features those studied by QG for higher 
aspect ratios and smaller Ra. The main difference here is provided by the spatial 
oscillations, which did not exist in the previous cases. The dimensionless stream- 
function maximum is 16.0, about 3 times larger than that for Ra = 1 O ' O  and y = 1 .O, 
which is 5.1 (see figure 5a  below). A very strong and slender vertical cell exists at the 
right sidewall and is part of the vertical boundary layer. The flows in the interior of the 
fluid are relatively weak and laminar. If there is a second bifurcation, it is likely to 
originate in an instability localized near the right sidewall. 

In $6.2, we explore the y-Ra parameter space at higher y ,  i.e. using larger salt flux 
on the horizontal boundary. In QG, we did show at lower Rayleigh number, Ra < lo5, 
that y 2 1.0 can produce asymmetric flows which would otherwise be symmetric at 
lower values of y. However, the domain y > 1.0 was not explored in QG at higher 
Rayleigh numbers, Ra 2 lo6 (see figure 14 there). 

In general, as the stress on a fluid system increases, one expects successive 
bifurcations to lead to more and more complex flows, until (weak) turbulence is 
reached. A number of such scenarios in geophysical fluid dynamics are reviewed by 
Ghil & Childress (1987) and Ghil, Benzi & Parisi (1985). Based on the simplified 
OGCM results of Mikolajewicz & Maier-Reimer (1990) and of Weaver et al. (1991), 
one would expect the next bifurcation in this system to be a Hopf bifurcation to 
oscillatory solutions. We have indeed found such bifurcations for both monotonic and 
non-monotonic boundary conditions. Hopf bifurcation is studied in detail in 6 5.3 
below ; the results for monotonic boundary conditions (not shown) are quite similar. 
The independence of the oscillatory solutions from a specific form of boundary 
conditions is discussed in $7.  

5. Type-A boundary conditions, Ra, = 104-106 
To study Hopf bifurcation in the presence of non-monotonic salt flux, we compute 

first steady flows due to non-monotonic restoring conditions. As shown in the 
Appendix, these conditions produce non-monotonic salt fluxes, which are then 
imposed on the boundary and can give rise to oscillatory solutions. To explore Ra- 
values appropriate for the ocean, it is desirable to explore the flows at the highest Ra 
attainable by our computational resources. We thus conduct investigations up to 
Ra = 1012($Ra = lo6). 

To be consistent with $4, we have confined our studies exclusively to 9 = 2 = 0.01. 
The monotonic T- and S-functions in (2.6e), used for all computations carried out in 
QG and in this study so far, are now changed to the non-monotonic function 

T =  T ( x ) = S ( x ) = ~ ( s i n 3 ~ ~ - 1 )  at z = O ;  (5.1) 

T and S are still symmetric about x = ;, where they reach a minimum value of - 1. 
They increase in magnitude with distance away from .x = t,  reaching maximum values 
of zero at x = Q and i. Then they decrease again towards x = 0 and 1. We have chosen 
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FIGURE 4. Symmetric steady states for type-A restoring boundary conditions at 9 = 9 = 0.01 and 
Ra = lolo, 10” and lo1*. (a ,  b) Ra = 1 O ’ O :  (a)  T, (b) $, = 2.70, A$ = 0.30; (c,  d )  Ra = 10”: ( c )  
T, ( d )  $, $,,, = 7.20, A$ = 0.90; ( e , f )  Ra = 10”: (e )  T, (J) $, $,,, = 10.0, A$ = 1.00. 

these boundary profiles for T and S because they will create a non-monotonic salt flux. 
To ensure that the flows are convection dominated, we investigate the circulation at 
three different Rayleigh numbers: Ra = lolo, loll, and 10l2. The corresponding time- 
step sizes are Ar = 1 x lo-’, 5 x lo-*, and 2 x lo-*, respectively, to ensure computational 
stability. 

5.1. Symmetric solutions 
The symmetric states obtained at Ra = 10’’ with restoring boundary conditions (5.1) 
are discussed first. Figures 4(a) and 4(b) are respectively the near steady-state 
temperature and stream function in this case. Comparing these with figures 1 (e)  and 
l(f> in 94.1 shows the difference in response to the non-monotonic boundary 
conditions at the same Ra. These differences are most obvious in figure 4(b), namely, 
the two internal boundary layers, or plumes. They are situated at some distance from 
the side boundaries because the temperature maxima are at x = A and g. instead of 0 
and 1 as in QG and 94 here. These plumes are not situated, however, at the temperature 
maxima, but at a distance approximately from the walls (recall that the total 
width is unity). The shift in the plumes’ positions indicates strong horizontal advection 
within the bottom boundary layer towards the walls. 

The plume proper is very narrowly confined within two or three grid points. This 
shows that - even with 300 grid points in the horizontal direction ~ the numerical 
resolution is barely adequate to represent this particular part of the flow field. It is not 
possible to stretch coordinates to resolve the plumes, as is done for the boundary layers 
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(see (3.6a. 6) in QG), because we do not know beforehand the location of the plumes. 
The problem is even more complicated when moving internal fronts are present, as in 
the (weakly) oscillatory solutions shown in 95.3  below. But the temperature and 
salinity fields are reasonably well resolved in the horizontal boundary layer. For the 
bulk of the fluid in the upper half of the container, T and S are almost uniform. The 
similarities between the symmetric steady states induced by monotonic and by type-A 
boundary conditions are more striking than their differences. The portions of the mass 
and velocity fields between the two plumes in figures 4(a )  and 4(6) resemble figures 1 (e)  
and 1 0  quite well. 

Figure 4(c-f) depicts temperature fields and stream functions for the two higher 
Rayleigh numbers, Ra = 10" and 10l2. The stream function plots in figures 4(b), 4(d) 
and 4(f) all consist of two main cells. For all three Ra-values, the internal layers are 
situated approximately at the same x-positions. A number of differences, though, are 
evident. The plumes' depth penetration for the two lower Ra-values is quite similar but 
the plumes stop at mid-depth for Ra = lo'* (figure 4.f). The streamlines for Ra = 10'' 
in figure 4(b) are very smooth, with no sign of standing waves. On the other hand, 
figure 4(d) shows a great deal of short-wave structure, indicating that waves born of 
the vertical plumes are propagating towards the interior at almost all depths, while no 
sign of internal oscillation exists between the plumes and the sidewalls. The main cells 
only occupy the lower half of the enclosure, but there are additional, weaker cells in 
the upper part of the fluid. This case, unlike the one for Ra = lo'', never reached a true 
equilibrium. In figure 4Cf) two weak fronts are travelling inward toward the centre of 
the container, but get weaker as they progress. After they have dissipated, new fronts 
are formed. These processes take place very slowly. 

Quantitatively, the absolute stream function maximum increases from 2.70 to 7.20 
and then to 10.0 as the Rayleigh number increases from 10'O through 10" to 10". The 
horizontal velocity maxima increase from 1300 to 4500 and then to 9000. The vertical 
velocity maxima increase from 510 to 1800 and then to 3200, all in non-dimensional 
units (not shown). Roughly speaking, an increase by a factor of 10 in Ra produces a 
flow two or three times as vigorous. The overall effects of higher Rayleigh numbers on 
the flows are generally expected, although the complexity of the flows at the higher Ru- 
values cannot be anticipated. The horizontal boundary-layer thicknesses indeed 
decrease in proportion to Ra-'I5: an order of magnitude increase in Ra reduces the 
boundary-layer thickness by a factor of 0.63. This reduction can be roughly estimated 
from the three isotherm structures in figures 4(a), 4(c) and 4(e). 

5.2. Asyrnetric steadv states at y = 1 .O 
We first show the differences between the asymmetric steady states obtained when 
using mixed boundary conditions, monotonic or of type A. Figures 5(a) and 5(b) show 
the stream function when Ra = 10" and the boundary condition used is of one or the 
other type. It is clear that non-monotonicity has produced but small quantitative 
changes in the results: the absolute maximum is 5.1 in the former os. 4.8 in the latter. 
However, the internal boundary layer of the latter is very clearly detached from the 
sidewall, as are those in the symmetric flow (figure 46, d, e). The plume here has shifted 
even further away from the temperature maximum, towards the sidewall. A very small 
secondary cell occurs between the boundary layer and the sidewall. Most conspicuous 
in the stream function of figure 5(6 )  is the substantial increase of wave-like structure 
compared with that in figure 5 (a). These small-scale structures extend slightly beyond 
the temperature maximum on the horizontal boundary, i.e. throughout the area that 
is gravitationally most unstable. 
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FIGURE 5. Asymmetric stream-function fields at y = 1.0, for monotonic ( a )  and type-A (b-d)  
boundary conditions. ( a )  RN = lolo, monotonic, $.,,, = -5.10, = 0, A$ = 0.30;  ( 6 )  Ra = 
type A. $,,,,,I = -4.80, $,,,,, = 0, A$ = 0.30; (c) Ra = lo", = - 12.0, $ ,,,"= = 0.80. A$ = 0.80; 
and ( d )  Ra = lo", $,,,, = - 13.50, $,,,,, = 0.90, A$ = 0.90. 

The asymmetric solutions for the type-A boundary condition at  higher Ra do not 
differ very substantially from that at Ra = 1O'O discussed above. All are essentially one- 
cell asymmetric circulations, as shown in figures 5(c) and 5(d ) ,  for Ra = 10" and 10". 
As the Rayleigh number increases, the internal spatial oscillations become ever more 
vigorous, although comparing figures 5(b), 5(c) ,  and 5 ( d )  shows that their horizontal 
extent changes but little at different Ra. The cell shapes are very similar in figures 5(b) 
and 5(c), while the cell height decreases in figure 5 ( d ) .  However, the cell strengths do 
differ: the absolute stream function maximum is 4.8 in figure 5(b) ,  about 12.0 in figure 
5 ( c ) ,  and 13.5 in figure 5 ( d ) .  The latter plot also shows a more complex flow pattern. 
The internal oscillations are much more vigorous than those for the lower Ra. Thus, 
the asymmetric states for all three Ra-values are quasi-steady one-cell circulations at 
y = 1.0. Large-scale oscillations, if any, will presumably arise at  higher values of y. 

5.3. Oscillatory solutions at y = 1.5 
As shown in figure 12(a) in the Appendix, the salt flux for a monotonic restoring 
condition at small 6 is essentially monotonic. It strongly differs from those shown in 
QG for larger values of 6, which are non-monotonic even when the restoring conditions 
are monotonic. Figures 12(b) and 12(c) show that, at small 6. the salt fluxes for non- 
monotonic restoring conditions are also non-monotonic. 

The total kinetic energy for an oscillatory solution at Ra = 10" and y = 1.5. using 
mixed boundary conditions based on the salt flux from a type-A restoring condition, 
is plotted in figure 6 .  This particular computation was run for nearly a million 
time steps. Computations for the symmetric states of high-Rayleigh-number flows in 
55.1 were started with a lower Ra. After the changes in the flow regime start 
to equilibrate, the Rayleigh number is increased. Each increase in Ra-value may 
require a reduction in At. This procedure brings the computation gradually to the 
desired region in parameter space. The computation discussed in this section started 
with Ra = lo'", but after lo5 time steps, the Rayleigh number was raised to 10". 
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FIGURE 6 .  The time evolution of kinetic energy for type-A boundary conditions at Rn = 10". 
y = 1.5 and 9 = 2 = 0.01. Time on the abscissa in multiples of 100 time steps. 

As figure 6 shows, the system has reached a quasi-equilibrium state at time step 
2 x lo5. Then the restoring boundary condition for salinity is replaced by the salt-flux 
condition and a very small perturbation, O( 10-7, is introduced next to the bottom in 
the container's right half at the next time step. As a result, the kinetic energy increases 
in the mean and starts to oscillate with a period of about 14 k (1 k = 1000 time steps). 

The initial overshoot that occurs at 200 k decays and the oscillations slowly decrease 
in amplitude up to 300 k. Then the amplitude increases again exponentially and 
reaches its maximum near time step 420 k, while the period stays near 14 k. The 
amplitude of the oscillation decreases somewhat till 500 k and is modulated with a 
longer period, equal to 7 or 8 periods of the basic oscillation. The modulating 
amplitude is very small, but shows the possibility of an additional oscillatory mode 
which may be more prominent at larger y. There is no doubt that the large-amplitude, 
rather regular oscillations sustained between 500 k and 900 k are a major feature of the 
system. Now the interesting questions to answer are the following: What is the nature 
of these oscillations and what is the dynamics governing them? We shall try to answer 
these questions next. 

Between 200 k, when the perturbation is applied, and up to 400 k time steps, figure 
6 indicates that the velocity field develops intensely, with an explosive growth of kinetic 
energy. During this time interval, the flows consist of a single cell (not shown here) 
whose strong core remains stationary. The cell is detached from the sidewall. A number 
of small-scale oscillatory features can be interpreted as internal waves, as in figure 5.  
Figure 6 shows that, at time step 320 k, the normalized mean energy is about 11  and 
the amplitude of the oscillations about 1.0. During this time interval, the single cell 
preserves its shape fairly well, but the absolute stream-function maximum oscillates 
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FIGURE 7. Enlarged portion of the kinetic energy evolution in figure 6. The solid circles 
correspond to the consecutive stream-function plots in figure 8 (a-h). 

from 12.8 to 9.6. Therefore, the oscillation manifests itself as a periodic change in the 
strength of the single cell. 

The system equilibrates to a steady large-amplitude oscillation from time step 500 k 
onward. During the equilibration, the mean kinetic energy is about 16 and the 
amplitude of the oscillation is 10.5, ten times larger than before. The most remarkable 
feature of figure 6 is the regularity of these oscillations both in amplitude and 
frequency. 

Figure 7 shows an enlarged cycle of the kinetic energy, and in figure 8 (a-h) we show 
a selected number of plots of the stream function over the period of one oscillation (see 
solid circles in figure 7). Most interesting is the number of cells that appear and 
disappear during the cycle. The number changes from one when the kinetic energy is 
maximum (figure 8c)  to four at low kinetic energy (figure 8g) .  Kagan & Maslova 
(1990) are the only previous authors studying related problems to have reported on 
multiple-cell formation. These authors were working on a three-layer ocean model and 
showed schematic diagrams of a varying number of cells. The change in the number of 
large-scale cells here, along with the small-scale features near the plume (figure 8&g) 
and the propagation of a front from the plume into the more quiescent part of the flow 
(figure Sb-f),  suggest that the dynamics of these oscillations is rather complex and 
requires further study. 

Figure 8(a-h) covers a complete cycle of the oscillation. Near minimum energy 
(figure 8 g ) ,  the circulation consists of four cells in the fluid's locally stable part, i.e. that 
portion of fluid on the left side of the enclosure not containing the persistent internal 
waves on the right. The largest and strongest cell, in the lower-right side of the 
container, has a gravitationally unstable region where strong small-scale internal 
oscillations occur. These internal waves are well resolved by our grid, with about 12 
grid points per wavelength. Shortly past the energy minimum (figure 8 a, h),  the minor 
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FIGURE 8. Stream-function plots at regular intervals during a complete oscillation cycle for Ra = 10" 
and y = 1.5: (a) 402 k, = - 17.00, $,,,,, = 

$mar = 0.70, A$ = 0.70; (e) 410 k, $.,,, = -7.00, $,,,,, = 1.50, A~ = 0.50; cf) 412 k,  $,,,(" = -6.50. 
$,,,,, = 1.50, A$ = 0.50; (g) 414 k, a,km," = -7.20, $,., = 2.40, A$ = 0.60; and (h) 416 k, +mtn = 

= - 13.00, $,,, = 3.00, A$ = 1.00; (b)  404 k, 
1.00, A$ = 1.00; (c) 406 k, $,,,(" = - 17.00, = 1.00, A$ = 1.00; ( d )  408 k, = - 10.50, 

- 12.0, $,., = 4.00, A$ = 1.00. 

cells disappear, and the main cell shrinks to minimum size. The strong internal 
boundary layer is positioned further to the left of the right boundary than at any other 
time during the cycle. Between the plume and the vertical wall, there is a weak but 
visible counter cell. The vertical plume is so strong that only part of it is detrained into 
the interior, while the rest falls back down directly to form a very slender cell with the 
original plume. Tremendous shear occurs, therefore, in this region. 

To the left of this slender cell and separated from it by a region of relatively smooth 
flow is a strong internal wave packet, situated exactly at the location of the temperature 
maximum. While the kinetic energy is on the upswing (figure 8a),  this packet of 
internal waves has become so strong that its envelope builds up to a front, similar to 
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a solitary wave or an internal bore (figure 8b). There is some resemblance, possibly 
fortuitous, to internal solitary waves generated by abrupt topography in the ocean 
(Quon & Sandstrom 1990; Sandstrom & Quon 1994) and to convective microstructures 
observed on smaller scales (Gregg 1987). The front remains vertical as it propagates to 
the left (figure 8 c-e). There is also simultaneous displacement of the plume towards the 
right wall (figure 8 a-d) and a growth of slender convective cells between the boundary 
maximum of the temperature and the plume (figure 8b-e). The kinetic energy of the 
system reaches its maximum just after figure 8(c), and will then decline very rapidly. 

The integrated heat flux across the bottom boundary (not shown) evolves roughly 
in quadrature with the kinetic energy. The system absorbs heat when the kinetic energy 
increases, does not exchange heat with the exterior when the energy is at an extremum, 
and the heat is drained out of the system when the energy decreases. The internal 
dynamics redistributes the temperature near the bottom boundary and in the interior, 
thus helping sustain the oscillation. 

In figure 8(d), the front has advanced past the mid-point of the container, and has 
steepened further. Note also that the front is much steeper near the bottom where it 
is advancing against the main circulation; within the top half it is less steep because it 
is advancing with the large-scale flow. In the same panel, reflection of the right-most 
penetrating slender convection cell from the right sidewall is apparent, helping form the 
internal waves shown here. As this slender cell is carried leftward, away from the wall, 
a number of additional cells - which do not extend through the entire depth of the fluid 
- are formed and compressed between the penetrating cell and the boundary maximum 
of the temperature (figure Sd-g). In figure 8(e). the front has dissipated considerably, 
especially in the container's bottom half where the fluid is strongly stratified. On the 
right, two secondary cells, one near the upper-right corner, and another underneath it, 
have begun to form. In figure S(f), when the kinetic energy is approaching its 
minimum, the front on the left has almost disappeared. The two cells on the right have 
strengthened, and a fourth cell at the lower left corner is starting to appear. Finally in 
figure 8 (g ) .  when the kinetic energy has almost reached its lowest level, four cells are 
quite prominent, after which the cycle repeats itself. Note that throughout the whole 
cycle, the slender cell formed by the internal boundary layer never loses its identity. It 
is carried back and forth by the gravitationally unstable region, where the rising plume 
supplies the energy. 

The evolution of kinetic energy and of the flow patterns for monotonic boundary 
conditions (not shown) is quite similar. The only two major differences are that: (i) the 
mean kinetic energy and its amplitude in the sustained oscillatory regime are both 
smaller; and (ii) no detached plume occurs, strongest horizontal gradients being 
confined to the neighbourhood of the right wall. Internal wave packets and multiple 
cells do still occur, although they are weaker than for the A-type boundary conditions 
studied here in detail. 

How prevalent are oscillatory solutions in the system under investigation? For 
example, at the aspect ratio we have fixed here, does Hopf bifurcation occur at higher 
or lower Rayleigh numbers than 1 O"? Furthermore, where would periodic solutions 
cease to exist if we decrease y from its present value of 1.5? Does Hopf bifurcation 
occur for the higher aspect ratios studied in QG? If so. at what values of y? These 
general questions can only be answered by constructing a hypersurface in parameter 
space consisting of Hopf bifurcation points. It is numerically too demanding - given 
the number of parameters - to do so and answer all these questions, but we show here 
for illustration purposes a Hopf bifurcation diagram for Ra = 10" with type-A 
boundary conditions. 
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FIGURE 9. Bifurcation diagrams. (a) Computed Hopf bifurcation (see text for details); the fitted curve 
is y = 1.020+0.098A2. (6) Schematic bifurcation tree, showing how each asymmetric steady solution 
branch gives rise to a branch of oscillatory solutions having mirror symmetry with respect to each 
other. 

In figure 9(a) ,  the oscillatory amplitude A of the total kinetic energy is plotted 
against y. The dots are from different numerical experiments and the smooth curve is 
the least-square fit of a parabola forced to be symmetric about A = 0. This follows the 
approach of Appendix C in QG for the pitchfork bifurcation studied there, in relying 
on the universal form of the amplitude us. supercriticality curve near bifurcation (e.g. 
Ghil & Childress 1987,g 12.2). A similar Hopf bifurcation occurs for the one-cell steady 
solution that has the plume near the left sidewall. The schematic diagram continuing 
the pitchfork bifurcation, studied in QG and in g4.2 and 5.2 here, with the Hopf 
bifurcations studied in the present subsection appears in figure 9 (b). Similar oscillatory 
states also exist for higher or lower Ra (not shown). As Ra is increased to 10l2, both 
the y-value for pitchfork bifurcation (compare figure 14 in QG) and for Hopf 
bifurcation decrease. The general character of the sustained oscillations is similar to 
that at Ra = 10" (figures 7 and 8), but the flows are more vigorous and rapid. The 
bifurcation points with respect to for different Ra are expected to be different. 

6. Type-B boundary conditions, Ra,, = lo5 
As defined at the end of $1, type-B boundary conditions mean either that the 

boundary values of T are monotonic in x and the boundary values of S are non- 
monotonic, or vice versa. In this section, we choose a monotonic T,  cf. (2.6e), and a 
non-monotonic S,  cf. (5. l ) ,  as being more realistic for the present-day North Atlantic 
(compare Weaver et al. 1993). Type-B boundary conditions eliminate the one-to-one 
correspondence between T and S,  destroying their symmetry. Here we are interested in 
the following question: when a monotonic T is prescribed, how does an arbitrary non- 
monotonic S (and hence non-monotonic salt flux) affect the system? This condition is 
intermediate between monotonic and type-A boundary conditions. We wish to show 
that the details of the boundary values are not of crucial importance as far as large- 
scale flows are concerned. Regardless of these details, we should be able to generate 
symmetric and asymmetric steady flows, as well as oscillatory ones. As we shall see, 
dissimilar T and S restoring boundary conditions may, however, alter the stability 
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FIGURE 10. Symmetric steady state at Ra = 10". 9 = 9 = 0.01, y = 1.0, given type-B boundary 
conditions: (a )  T ;  (h)  S, S,,,,, = -0.96. S ,,," = 0, AS = 0.06; (c) p.pmi ,  = -0.65, p,,,,, = 0.15, 
Ap = 0.05; and ( d )  stream function, = 6.40. A$ = 0.80. 

properties of the system. We have chosen only one value of Ra for critical evaluation; 
this appears to be quite adequate for illustrative purposes. 

6.1. Symmetric steady solutions 
Figure 10 shows the steady-state contours of T,  S,  density anomaly and stream 
function, subject to restoring boundary conditions of type B. for Ra = 10". When the 
restoring boundary conditions for both T and S are the same, whether they be both 
monotonic or both non-monotonic, T, S, and the density field look exactly the same. 
Here, they all differ, as seen in figure lO(a-c). The better resemblance between T and 
the density indicates that the latter is much more strongly affected by T than by S.  The 
flow field in figure 10(d) resembles that due to purely monotonic boundary conditions 
(figure 2b): the flow occupies only the lower half of the cavity; moreover, it has similar 
small-scale spatial oscillations near the sidewalls. However, the stream-function 
maximum here is almost 50% higher than that for the monotonic case, while being 
about 20% less than that for the type-A case in figure 4 ( d ) .  

6.2. Asymmetric steady and oscillatory solutions, y = 2.0 and y = 3.0 
Although type-B boundary conditions are in a sense intermediate between purely 
monotonic and type A. the results above indicate that temperature plays a more 
dominant role because yh  < 1 (see 42). Both monotonic and type-A conditions led to 
similar types of solutions : symmetric equilibria give rise, via pitchfork bifurcation, to 
asymmetric equilibria that produce in turn, via Hopf bifurcation, oscillatory solutions. 
Hence, type-B boundary conditions should also produce all three types of solutions. 
Indeed they do, and the resulting solutions resemble in certain ways those of the other 
two cases, while in some ways they differ. In this subsection, we discuss briefly the flow 
configurations associated with type-B conditions, at  y = 2.0 and y = 3.0. 

The temporal evolution of the solutions, as well as the temperature and salinity 
fields, resemble the previous cases described in @4 and 5. The run at y = 2.0 was 
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FIGURE 1 1 .  Stream-function contours for type-B conditions at  Ra = lo", 9' = 9 = 0.01 : (n) 
asymmetric equilibrium at y = 2.0, $,ni,8 = - 14.00, = 5.00, A$ = 1.00; (b)  snapshot of 
oscillatory solution at y = 3.0, = -26.00, $,,, = 4.00, A$ = 1 .OO. 

carried out until the kinetic energy had reached a quasi-steady state, and the run at 
y = 3.0 was carried out until an asymptotically oscillatory regime was reached. The flow 
fields of both solutions have a fairly permanent secondary cell in the lower-left corner. 
In figure 11  (a) we show a quasi-steady asymmetric state with one cell being strongly 
dominant; in figure 11 (b)  we selected one time frame of an oscillatory solution, at the 
point at which the kinetic energy is near maximum. Figure 11 (a) and figure 5(a-c) are 
quite similar except for the larger and stronger secondary cell here. The stream- 
function maximum is also larger than those in figure 5. Such differences are probably 
due to the values used for y, rather than the difference in the boundary condition. 
Figure 11 (b) can easily fit into the time series of figure 8(a-h). We have thus found no 
surprises in this set of intermediate boundary conditions. While a more complete 
exploration of the Ra-y diagram for different types of boundary conditions does seem 
desirable, the shape of the boundary conditions is not crucial to the existence of either 
the first or the second bifurcation in the present two-dimensional Boussinesq system. 

7. Concluding remarks 
We have extended the study of thermosolutal convection of Quon & Ghil(l992, QG 

in the main text) to include small height-to-length aspect ratios 6 and non-monotonic 
restoring boundary conditions. The non-monotonic restoring conditions of type A 
(both temperature and salinity non-monotonic) or type B (one monotonic and the 
other not) lead to non-monotonicity of the corresponding type in the derived mixed 
boundary conditions. 

To produce convection-dominated flows for very small aspect ratios, one must use 
vertical components of viscosity and diffusivity that are much smaller than the 
horizontal components. Otherwise conduction dominates both the flow and solute 
transport even at (thermal) Rayleigh number Ra as high as lo", when Ra is based on 
the horizontal lengthscale L. 

For aspect ratio S = H / L  = 0.01, we found that vertical-to-horizontal ratios of 
viscosity 9 and of diffusivity 2 that are O(S) yield convective flows for Ra-values 
of 10'o-10'2; the equivalent Rayleigh numbers based on height scale H are Ra, --= 
P R a  = 104-106. With salt-flux strength y of order unity (between 1.0 and 2.0), 
the computations for all boundary conditions lead to an asymmetric steady-state 
circulation via a first bifurcation of pitchfork type; this circulation is restricted 
to or dominated by a single cell. Hopf bifurcation to oscillatory solutions is the 
second bifurcation found for all three types of boundary conditions, as y is increased 
further, at Rn = lo'", 10" and lo'* (Ra, = lo4, lo5 and lo6). We have found, 
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FIGURE 12. Salt flux computed across the bottom boundary for a steady symmetric state obtained 
with : (a) restoring monotonic boundary conditions in both temperature and salinity (the whole curve 
has been multiplied by a factor of 3, which is the value of y used in the asymmetric computation of 
$6.2); (b) type-A non-monotonic boundary conditions; (c)  type-B boundary conditions. 
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therewith, that Hopf bifurcation is extremely robust in the present two-dimensional 
Boussinesq system. It appears that type-A boundary conditions permit Hopf 
bifurcation at smaller y. 

It is found in our model that advective Hopf bifurcation is closely related to solitary 
wave-like disturbances generated in gravitationally unstable regions. Obviously, this 
result does not preclude Hopf bifurcation due to other dynamical mechanisms. It is 
clearly difficult to sort out all bifurcations mechanisms, let alone the model’s complete 
Ra-y regime diagram. To meet that objective, much more exhaustive studies need to 
be conducted. However, the studies we have carried out in QG and in this paper have 
identified some important criteria for bifurcation. We have gained valuable 
understanding of thermosolutal convection as thermal and trace-constituent flux are 
increased. To establish clear relations to physical phenomena observed in the world 
oceans will require more work at higher Rayleigh numbers, smaller 9 and 1, and in 
three dimensions. Our work has nevertheless provided a stepping stone for further 
exploration of this complex and fundamental fluid-dynamics problem that might have 
some bearing on understanding the world’s past and future climate. 

The community of thermohaline circulation researchers is still small and its quest is 
young. Numerous discussions and exchanges of reprints and preprints have stimulated 
our continued interest in the problem and the work on this particular model. Support 
for this work from DOE Grant W/GECOO14 (through the National Institute for 
Global Environmental Change) and from an NSF Special Creativity Award to M.G. 
are gratefully acknowledged. B. Gola, K. Mah and C. Wong helped with the typing. 

Appendix. Computed salt fluxes 
Because the system is highly nonlinear, advective transport of tracers makes it 

difficult to predict what the salt flux will look like for a quasi-steady symmetric state 
obtained with given restoring boundary conditions. In figures 12(a)-12(c), we present 
the salt flux for monotonic boundary conditions, type-A and type-B non-monotonic 
boundary conditions, respectively. The latter two prescribed salt fluxes are non- 
monotonic in that they first decrease and then increase with distance from the midpoint 
of the enclosure along the x-axis, as does the prescribed temperature used in obtaining 
figure 12 (b) (type-A boundary condition). The small-scale spatial oscillations are due 
to gravitational instability at steady state. It is obvious that these regions of instability 
are situated differently for the three cases. 

It is interesting that in figures 12(a) and 12(b), the absolute salt-flux maxima are at 
the centre, while in figure 12(c) they are at the end points. For figure 12(a), obtained by 
prescribing monotonic temperature and salinity functions, decreasing from the vertical 
symmetry axis to the sidewalls, the result clearly indicates the dominance of the 
temperature effect (flow rising near the sidewalls and sinking near the centre) over the 
salinity effect (that tends to impose the opposite flow direction). The difference between 
figures 12(b) and 12(c), that agree in prescribed salinity (non-monotonic) but disagree 
in prescribed temperature (non-monotonic us. monotonic), supports this conclusion. 
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